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Static Spherically Symmetric Solutions in General
Projective Relativity
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Static spherically symmetric solutions have been obtained for general projective
relativity with n =0 and n# 0 both in isotropic and curvature coordinates. In
curvature coordinates, only a restricted exact solution is possible. However, an
approximate solution can always be obtained following a method similar to
Vanden Bergh. In these spacetimes there is no horizon, but only a naked
singularity at r=0. Thus there are no black holes. It is shown that there is no
solution in static, spherically symmetric, conformally flat spacetime.

1. INTRODUCTION

Recently Arcidiacono (1986) developed a new general projective rela-
tivity (GPR) which is based on the de Sitter universe. The local curvature
is described by the generalized Einstein equations

Rap—3iRyas=xTap (A,B=0,1,2,3,4) (1.1)
where y,p is the five-dimensional metric and T, is the energy tensor of
the material field. These equations are similar to the equations of Jordon-
Thiry unified theory (which generalizes the Kaluza-Klein five-dimensional
theory), but have a different physical interpretation.

As a particular case, Arcidiacono (1987) obtained the equations of the
scalar-tensor gravitational field, which have only a formal similarity with
the Brans-Dicke field (Brans and Dicke, 1961). The new field equations are

Iéik _%aikﬁ +(3n+ l)d)_l[vivkd) —ayld¢
~3n¢ H(n+1)VdpVid+nax VoV, pa"1=xéd Ty (1.2)
R+6n[¢ 'O+ (n—1)¢V,pV pa"1=—2xd " Too (1.3)

where i, k=1, 2, 3, 4 and the quantities with carets refer to their four-
dimensional components.
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For the vacuum case, the field equations of general projective relativity
with n=0 are

Py 1
Rik+_¢;rk:0 (1-4)
¢
D(ﬁ——“—aikqb;,-k: (15)
Here a semicolon denotes covariant derivatives in four-dimensional

spacetime.

Arcidiacono (1986) has given a technique to obtain a solution of the
GPR field equations for arbitrary n from a solution of the GPR field
equations with n =0 by the transformation of the metric as

Yik = ¢2"aik; Yoo = ¢2(H+1); Yio=0 (1.6)

Singh and Arcidiacono (1989) have established an analogue of
Birkhoff’s theorem in GPR, and Singh and Singh (1989) have considered
a product space and plane-fronted waves in GPR. Singh et al. (1989) have
considered a stationary axisymmetric vacuum field in GPR.

In this paper we consider the vacuum fields of GPR in spherically

symmetric spacetime and obtain solutions of GPR with n=0 and n#0.
Finally, the nature of singularities of these solutions is discussed.

2. SPHERICALLY SYMMETRIC SOLUTIONS IN
ISOTROPIC COORDINATES
We consider the static, spherically symmetric spacetime whose metric
is in the isotropic form (Synge, 1960)
ds®>=e® dt* — P (dr*+ 1’ d6*+ 1’ sin” 0 d¢?) (2.1)

where a and B are functions of r alone.
Taking ¢ as a function of r only, we find that the field equations
(1.4) and (1.5) for the metric (2.1) reduce to

an @i B_wb dn Pid
T Y 2
'311+,31+3.31 By o Bt 201 (2.3)

2 r 2 r & ro

2
a, 012[31 2“1 a ¢,y

ay;+— 3 L+ 21 > " +T=0 (2.4)
¢11+(a1+231)¢1+£fl=0 (2.5)

The subscript 1 denotes differentiation with respect to r.
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From equations (2.3) and (2.4), we have

all+Bll+(a1+Bl)¢l+(al+Bl) (a1+.31+§> +ﬁ___0 (2.6)
2 2¢ 2 2 re
From equations (2.5) and (2.6), we obtain
a11+ﬂl1+(a1+31)¢1+ﬁ+(a1+ﬁ1+ﬁ><al+ﬁl+§) =0 (2.7)
2 26 & 2 b 2
which on integration gives
rpe P 2=qar’+b (2.8)
where a and b are constants.
From equations (2.4) and (2.5), we have
a,+B, 2
¢0‘11+‘11¢1+¢11+(‘11¢+¢1)<1—2—1+;>:0 (2.9)
After integration, this gives
r? e a6+ ¢))=p (2.10)
where p is a constant of integration.
We can write equation (2.5) as
d (a+p)/2
—(re $)=0 (2.11)
dr
On integration, equation (2.11) gives
rreleth2gy = K (2.12)

Here K is a constant.
Dividing equation (2.12) by (2.8) and further integrating, we obtain

K . a 1/2
¢=mlexp{Wtan [(3) r]} (2.13)

Subtracting equation (2.12) from (2.10) and then dividing by (2.8), we get

_p-K
251

T ar+b (2.14)

which has the solution

_ /2
e“=m, exp{i—l;—)%tan“[(g) r]} (2.15)
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Here m, and m, are constants of integration. Substituting the values of ¢
and e” from equations (2.13) and (2.15) in (2.8), we have

2 2 1/2
g _(ar'+b) —(K+p) | (a
el = pca— exp (ab)"? tan 7y (2.16)
In order for these solutions to satisfy all the field equations, we must
have a relation between constants such as

p*+3K’+16ab=0 (2.17)

Thus equations (2.13)-(2.17) constitute the complete solution in GPR (with
rn =0) for the metric (2.1). The corresponding metric is given by

_ 1/2
ds®=m, exp {ﬁ tan”! [(%) r]} ar’

(ar’+b)? {—(K—l—p) _1[ 2)1/2]
- e exp (ab)"/? tan (b r }

x (dr’*+r* do*+ 1 sin® 6 dp?) (2.18)

The GPR vacuum solution for arbitrary n via transformation (1.6) are

K o a 1/2
¢ =m; exp Wtan b r
(ar*+b)® 2nK-K-p._ _[(a\'?
YI‘me(’_")mzr“ exp (ab)l/z tan E r
(ar?+b)? 2nK—-K-p _,[({a\'"?
722=_m%(1—n)m2r2 eXp (ab)l/z tan E r

(ar*+b)*sin’ 6 2nK~K~-P _ [(a\"?
Y33 =~ M2y 2 exXp (ab)'? tan” b T (2.19)

om 2nK—K+p _,|(a 1/2
Yaa = M7 M, €Xp ———(ab)l/z tan b r

. 2K(n+1)  _,[[/a\"?
Yoo = M3 “)exl){ (ab)"? tan l[(g) r

Y10=0

There is no horizon in this spacetime, only a naked singularity at »=0.
Thus, there are no black holes.
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3. SPHERICALLY SYMMETRIC SOLUTIONS IN
CURVATURE COORDINATES

We take the spherically symmetric line element in the form (Synge,
1960)

ds’=e* dt*>— e dr*—r* do” — r’ sin® 0 d¢* (3.1

where « and B are functions of the radial coordinate r alone.
Considering the scalar field ¢ as a function of r only, the field equations
{1.4) and (1.5) for the line element (3.1) reduce to

ﬂ_l__al(al B1) 31 @_M_

2 4 ro¢  2¢ =0 (3.2)
r(a, - By) ey 5
1+ 2 + ) e” =0 (3.3)
an a;(a;—Bi) a P,
> + 4 + Y =0 3.4)
¢n+(—a‘—_~2@‘ﬁ+3%=o (3.5)

After a recombination and rearrangement of terms, equations (3.2)-
(3.5) reduce to the following equations:

r231¢1 "2¢11 2rdy

1B, — + +——+1-¢e’ =0 (3.6)
Y2 6 ¢
T i 1+ef =0 (3.7)
@
r2a1¢1 8
B+ —1+e=0 (3.8)
¢ ¢1) B
+1+e’ =0 (3.9)
(5%
From equations (3.7) and (3.9), we get
a, = m% (3.10)
which gives the solution as
. (3.11)

where m and p are constants.
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Using (3.10) in (3.8), we have

2
mi{r
rBl+—2—<%> —1+ef=0 (3.12)
From equations (3.6), {(3.9), and (3.12), we obtain
rd>11 <r¢) m+1(r¢1>2 ré,
+—(=) +—==0 (3.13)
2¢ 4 ¢ 2 ¢ ¢
Equations (3.9) and (3.13) then yield
P =1+(m+2) 8L (r¢1) 3.14)
( p) + p) (
Integrating (3.5), we get
r’e¢,=KeP /2 (3.15)
Here K is an integration constant.
Again from (3.11) and (3.15), one gets
2 1y 2_ 2, ~(m+2) B
r —d)_ =K [0/ € (316)

Now we consider two cases, depending on the value of m.
Case 1. When m = —2. From equations (3.14) and (3.16), we obtain
¢

j= (K*r+r7)72 (3.17)
which on integration gives
s =1_+(Ti§'r+17 (3.18)
From (3.11) and (3.18), one has
e =P [T+ (KP4 1) (3.19)
Using (3.17) in (3.16), we get
22
s =K—12<F:_1 (3.20)
Thus, in this case the line element (3.1) turns into the form
ds* =~ K2 —5as [+ (KPP + 1)1 dr?
KT g do— v sin? 6 dg? (3.21)

—K2r2+1
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Now the GPR vacuum solutions for arbitrary n via the transformation (1.6)
are

_ dKr
¢_1+(K2+r2+1)'/2

___Kr { dKr }2"
ME TR T+ (K A+ )72

dK 2n

_ 2n+1) ) __ ™

Y22 =—F A {1+(K2r2+1)1/2}
. . dK 2n

om0 () 6.2

B { dKr }2‘"‘”
Yas =P 1+(K2r2+1)1/2

dKr 2(n+1)
7°°_{1+(K2r2+ 1)”2}

Yio=0

There is no horizon in this spacetime, only a naked singularity when
n < 1. Thus, there are no black holes.

Case II. m# —2. We define
&
Uu=r— (3.23)
¢
Using (3.23) into (3.13), we get

?u3+(m+2)uz+u=—ru1 (3.24)

We can rewrite this equation in the form

dr du 1 mu+m-+2

roou 2 mu?/2+(m+2)u+1

1 (m+2) du
2 mu?/2+(m+2)u+1

(3.24)

Due to the last term of (3.24') three cases arise:
Case (i). When A= (m+2)>-2m> 0, then equation (2.24) yields

K [mu2+(m +2)u+ 1]—”2[mu+ m+2—A'/2] ~(m+2)/281/2
K _ .
2 mu+m+2+AY?

(3.25)
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Case (ii). When A=(m+2)>-2m=0,

K, mu’ ]‘1/2 m+2
2o +(m+2)u+1 — .
r u[ 2 (m+2)u exp mu+m+2 (3.26)

Case (iii). When A=(m+2)*-2m <0,

K, mu’ -2 m+2  _ mu+m+2
T:u[ > +(m+2)u+1] exp (—_Wtan 1——-(:A)T (3.27)

Here K,, K,, and K; are arbitrary constants.

No exact solution is possible in this case. However, an approximate
solution can be obtained for n =0 and n # 0 both following a method similar
to Vanden Bergh (1980).

4. NONEXISTENCE OF THE CONFORMALLY FLAT
SPHERICALLY SYMMETRIC SOLUTIONS IN GPR

We consider the static, spherically symmetric, conformally flat metric
in the form

ds’=e*(dt*—dr’*—r* d6” — v’ sin® 0 d¢?) (4.1)
where « is a function of radial coordinate r only.

Assuming ¢ as a function of r, we have for the field equations
(1.4) and (1.5) for the metric (4.1)

o a;é
2a11+ + dzl 21¢1 =0 (4.2)
200 ;¢

%an+;a%+—-r—-1-+—2‘¢‘+%=o (4.3)
} GG LIV 44
et Zal , 2¢ (4.4)
¢11+¢1al+;¢’1=0 (4.5)

From (4.3) and (4.4), we have

¢
a, z‘= (4.6)
which yields the solution

p=g¢oe " (4.7

where ¢, is an integration constant.
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Using equation (4.6) in (4.4), we get

2
Tysop (4.8)
@, r
which leads to
K
a=—-——4K, (4.9)
r

Here K, K, are constants of integration.
With the help of equation (4.9), equation (4.7) can be written as

¢ = o eV K (4.10)

Now, we see that the equations (4.9) and (4.10) can satisfy the field
equation (4.2) if and only if K, =0, which implies that a = const and the
scalar field ¢ is constant everywhere. Thus, a conformally flat static solution
does not exist in the spherically symmetric case.

5. SINGULAR BEHAVIOR OF THE RIEMANN CURVATURE
INVARIANT R AND THE KRETSCHMANN CURVATURE
INVARIANT S

In this section we analyze the singular behavior of the solutions through
the nature of Riemann curvature invariant R and Kretschmann invariant S,

5.1. The Riemann curvature invariant for the GPR (with n =0) vacuum
solution (2.18) is given by

mlmz

1 2 2 K+ -1 vz
(—W[Sab+§(p +3K )]exp{(a—b)l%tan [(g) r]} (5.1)

Thus we see that

R-0 as r>0 or r->oo (5.2)

The Kretschmann curvature invariant S for the GPR (with n=0)
vacuum solution (2.18) is given by
_ m;‘mgrs{ [4a —2arA A 1_2]
"~ (ar*+b)*

ar*+b r2 or

B2 4 2 B2 2 2
+—[A—B——+ dar ] +——<A——>
r r ar+b 2 r

2 (2 e K ()]
+4<A r)}e" {(b)‘”t [(b) " 5:3)
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where

4ar— (K +p)
A= —— P
ar’+b

_P-K
ar’+b

Now, it is clear that
§->00 when r->0
(5.4)
S$->0 when r—>o
5.2. The Riemann curvature invariant R for the solution (3.21) is

R=0 (5.5)

The Kretschmann curvature invariant S for the solution (3.21) is

S 4F? {2(1—F)(F+2F+1) 6 1

T(F-1)%* (F+ F)? F F?
(F-1)(3F+F) 2
+|:3__F(F+F) ] } (5.6)
where
F=K*"+1

It is obvious that

S0 when r-0
(5.7)

S->0 when r-

6. CONCLUSIONS

Some static spherically symmetric solutions have been obtained for the
GPR for both n =0 and n # 0. These solutions have a naked singularity at
r=0 in one case for n <1 and in the other case for arbitrary values of n.
Thus, at least within the subset of vacuum spacetimes of spherical symmetry,
there are no black holes in Arcidiacono’s (1986, 1987) general projective
relativity.
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APPENDIX A

The Riemann curvature tensors Ry for the metric (2.1) are

By

R1212=%r2 e? (.311"‘7
Rys3=3rsin* g €P ([3,1+£3—1)
r

e
Ry =—2-[—a11 +%a1(31 —ay)]

4
Ry =1r*sin® 6 e® ([3%+ﬁ)
.

2a
Rypna= _%rz e” (alﬁl_l-—;l)

) 2a
Ri3s4= _%rz sin® 0 <a1B1 +_1>
r

The Riemann and Kretschmann curvature invariants R and S for this
metric are

_ 2
R=-e* [2311'{"0‘11’*'%(“%*',3%*'0‘131)"'; (2B1+a1)]

. B )
S=e_2ﬂ{2(,311+"2‘1> +711[a1(Bl_a1)_2a11]2

i)
3 B ’ a, 4 B p

respectively.

APPENDIX B
The Riemann curvature tensors R, for the metric (3.1) are
Ryzp= _%r.Bl
Ry313=—3rsin’ 0 B8,
Rins=—3e"[ay +3a,(a;— B))]
Ryss=rsin? 8(e 1)
Roppa=—tra, e P

Rigzqa=—%rsin® 0 a, e*#
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The Riemann curvature invariant R is

_ 2 1 ef
R=¢" |:a11+%a1(a1—ﬁ1)+; (al—ﬁl‘*’;“—):l

r
and the Kretschmann curvature invariant S is

(1-e?)? 1

S=4e* [—;4—‘+p (af'l'ﬁf)+(%a11+%af—4la1/31)2]
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