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Static Spherically Symmetric Solutions in General 
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Static spherically symmetric solutions have been obtained for general projective 
relativity with n = 0 and n # 0 both in isotropic and curvature coordinates. In 
curvature coordinates, only a restricted exact solution is possible. However, an 
approximate solution can always be obtained following a method similar to 
Vanden Bergh. In these spacetimes there is no horizon, but only a naked 
singularity at r = 0. Thus there are no black holes. It is shown that there is no 
solution in static, spherically symmetric, conformally fiat spacetime. 

1. I N T R O D U C T I O N  

Recen t ly  A r c i d i a c o n o  (1986) d e v e l o p e d  a new genera l  p ro jec t ive  rela-  
t ivi ty  ( G P R )  which  is b a s e d  on the de Si t ter  universe .  The local  curva ture  
is de sc r ibed  by  the gene ra l i zed  Eins te in  equa t ions  

RAB-- �89  (A,  B = 0 ,  1,2,  3 ,4 )  (1.1) 

where  TAB is the  f ive -d imens iona l  met r ic  a n d  TAn is the  energy t enso r  o f  
the  ma te r i a l  field. These  equa t ions  are s imi la r  to the  equa t ions  o f  J o r d o n -  
Thi ry  uni f ied  t heo ry  (which  genera l izes  the  K a l u z a - K l e i n  f ive -d imens iona l  
theory) ,  bu t  have  a di f ferent  phys ica l  in te rp re ta t ion .  

As a pa r t i cu l a r  case,  A r c i d i a c o n o  (1987) o b t a i n e d  the equa t ions  o f  the  
s c a l a r - t e n s o r  g rav i t a t iona l  field, which  have  only  a fo rmal  s imi la r i ty  with 
the  B r a n s - D i c k e  field (Brans  and  Dicke ,  1961). The  new field equa t ions  are  

RikA --~aik R 1  A + ( 3 n +  l)qb-l[ViVkqb_aikl--]~ p 

- 3n~b-2[(n + 1)Vi~bVkq~ + naikV,~Vsqba 1~ ] = X(~-2 T/k (1.2) 

/~ + 6n[~b-lFl~b + (n - 1)~b-2V,~bV~ba 's ] = -2x~b-4Too (1.3) 

where  i, k = 1, 2, 3, 4 a n d  the quant i t ies  wi th  carets  refer  to the i r  four-  
d i m e n s i o n a l  c o m p o n e n t s .  
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For the vacuum case, the field equations of  general projective relativity 
with n = 0 are 

1 
/~,k + 7 05''k = 0 (1.4) 

V305 =- a ik  05;i k = 0 (1.5) 

Here a semicolon denotes covariant derivatives in four-dimensional 
spacetime. 

Arcidiacono (1986) has given a technique to obtain a solution of  the 
G P R  field equations for arbitrary n from a solution of the G P R  field 
equations with n = 0 by the transformation of  the metric as 

Yik = 052naik ; Too = (/)2(n+l);  ~/i0 = 0 (1.6) 

Singh and Arcidiacono (1989) have established an analogue of 
Birkhoff's theorem in GPR,  and Singh and Singh (1989) have considered 
a product  space and plane-fronted waves in GPR. Singh e t  al. (1989) have 
considered a stationary axisymmetric vacuum field in GPR. 

In this paper  we consider the vacuum fields of  G P R  in spherically 
symmetric spacetime and obtain solutions of  GPR with n = 0 and n r 0. 
Finally, the nature of  singularities of  these solutions is discussed. 

2. SPHERICALLY S Y M M E T R I C  S O L U T I O N S  IN 
I S O T R O P I C  C O O R D I N A T E S  

We consider the static, spherically symmetric spacetime whose metric 
is in the isotropic form (Synge, 1960) 

d s  2 = e ~ d t  2 -  e t a ( d r 2 +  r 2 d O 2 +  r 2 sin 2 0 dq~ 2) (2.1) 

where a and/3  are functions of  r alone. 
Taking 05 as a function of  r only, we find that the field equations 

(1.4) and (1.5) for the metric (2.1) reduce to 

2 /~1 OL2~l 0511 /~ 1 (/) 1 O L , / ~  11 ..}_ O/11 hi_ __~. _1 } - -  : 0  (2.2) 
2 2 r 4 05 2q5 

/3 +132+3/31+al/gl+a,+/~,051+205~ 
~' 2 r 2 r 05 rq~ = 0  (2.3) 

2 2a ,  OL1 051 
a11+ a l + a 2 / ~ l +  + = 0  (2.4) 

2 2 r 05 

0511 -~ (OLI "t-81)051 ~_ 205~= 0 (2.5) 
2 r 

The subscript 1 denotes differentiation with respect to r. 
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From equations (2.3) and (2.4), we have 

0~1 1 -{- ~1 1 (0~1 "~- i l l)  (D1 (0/1 -]- i l l)  1/0~1 + /~ lq  3'~ + 051 = 0 
r) (2.6) 

2 205 2 r05 

From equations (2.5) and (2.6), we obtain 

O~ll"J-~ll"{ - (~l-J-~l)051 { - 0511-t- O~1 J~l"]-~)l~(O~l"J-J~l-{-~ = 0  (2.7) 
2 205 05 051\ 2 

which on integration gives 

rZ05 e (~+13)/2 = ar2+ b (2.8) 

where a and b are constants. 
From equations (2.4) and (2.5), we have 

05a 1 1 qt-Ot~ 1 05 1 "~-0511 "~-(Og 105-~-05 1)(  O~ 1 2 ~ 1-J-~) = 0  (2.9) 

After integration, this gives 

r2 e(~+')/2(ce105 + 051) = P  (2.10) 

where p is a constant of integration. 
We can write equation (2.5) as 

d 
d~ (r e( '~+t~)/261 ) = 0 (2.11) 

On integration, equation (2.11) gives 

r 2 e(~+s3)/205 1 = K (2.12) 

Here K is a constant. 
Dividing equation (2.12) by (2.8) and further integrating, we obtain 

K 1 05 = ml e x p { ~ t a n  [ ( b )  l/2r] } (2.13) 

Subtracting equation (2.12) from (2.10) and then dividing by (2.8), we get 

p - K  
a l  - a t 2 +  b (2.14) 

which has the solution 

e ~ ~ p - K  -1 = m2 e x p ~ t a n  [ ( b ) l / 2 r ] }  (2.15) 
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Here ml and m2 are constants of integration. Substituting the values of ~b 
and e ~ from equations (2.13) and (2.15) in (2.8), we have 

_ ( a r 2 + b )  2 f - ( K  +p)  a 1/2 
e t~ ~ , e x p /  ~ t a n - l [ ( ~ )  r ]}  (2.16) 

In order for these solutions to satisfy all the field equations, we must 
have a relation between constants such as 

p2+3K2+ 16ab = 0 (2.17) 

Thus equations (2.13)-(2.17) constitute the complete solution in GPR (with 
n =0) for the metric (2.1). The corresponding metric is given by 

= m 2  ~_~,al)) a 1/2 ds 2 e x p / ~  tan-1 [ ( ~ )  r l }  dt2 

(ar2+b) 2 ( - ( K  +p)  a ,/2 

X ( d r 2 q  - r 2 dO2+ r 2 sin 2 0 d~b 2) (2.18) 

The GPR vacuum solution for arbitrary n via transformation (1.6) are 

K 1 a 1/2 

= (arZ+b) 2 ( 2 n K - K - p  _~ 
Y .  rn~(l-.)m2r4eXp[ ~ ) - i -~  tan [ ( b ) ' / 2 r l }  

(ar2+b) 2 [ 2 n K  - K  - p  1 
"Y22-- m2O-~)m2r2eXp~ -~ - i7~  t a n - [ ~ - ~ ] l / 2 r j j  

r/a\ l )  

Y33 = m~(,_.)rn2r 2 exp~ ( a - ~ 5  tan- (2.19) 

Y 4 4 = m a m z e x p t  ~ b - - ~  tan-' 

. . . .  , exp][ (a -~7  f tan- '  Too 

71o=0 

There is no horizon in this spacetime, only a naked singularity at r = 0. 
Thus, there are no black holes. 
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3. S P H E R I C A L L Y  S Y M M E T R I C  S O L U T I O N S  IN 
C U R V A T U R E  C O O R D I N A T E S  

We take the spherically symmetric line element in the form (Synge, 
1960) 

d s  2 = e ~ dt  2 -  e ~ d r  2 - r 2 dO 2 -  r 2 sin 2 0 d4, 2 (3.1) 

where a and/3  are functions of  the radial coordinate r alone. 
Considering the scalar field ~b as a function of r only, the field equations 

(1.4) and (1.5) for the line element (3.1) reduce to 

a l l  ~ a , (O/1- -~ , )  fll ~_ 4,11 f l ,4 ,1= 0 (3.2) 
2 4 r 4, 24, 

1 + r ( a l  - f l , )  + r4,, _ e~ = 0 (3.3) 

a n +  al(a_~ _- /30 + oq + a~4,~ = 0  (3.4) 
2 4 r 24, 

4,,,+ (a , - /3 ,)4,~ ~_24,1 =0  (3.5) 
2 r 

After a recombination and rearrangement of terms, equations (3.2)- 
(3.5) reduce to the following equations: 

- r f l ,  r2~314,--~1 + r24,"+2r4,1+ 1 - e  ~ =0  (3.6) 
24, 4, 4, 

r a n  + 1 + e ' = 0 (3.7) 
O~ 1 

rfll-~ r : t~ ,4 , l  l + e ~ = 0  (3.8) 
24, 

r ( 4 , n - ~ b ' ~  +1 + e~ = 0  (3.9) 
\4,~ 4 , /  

From equations (3.7) and (3.9), we get 

4,, a,  = m - -  (3.10) 
4, 

which gives the solution as 

e ~ = p 4 , m  (3.11) 

where m and p are constants. 
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Using (3.10) in (3.8), we have 

r~l + - 1 + e r = 0 (3.12) 

F r o m  equat ions  (3.6), (3.9), and  (3.12), we obta in  

t2t~ll b./'/l(rt~l~3q mq-l(rt~l~2q_r~bl= 
2~b 4 \ th ] 2 \ th ] ~b 0 (3.13) 

Equa t ions  (3.9) and  (3.13) then  yield 

e~ = l + (rn + 2) rc~l + m  ( rqbl~ 2 
th 2 \ '-q~-/ (3.14) 

In tegra t ing  (3.5), we get 

r2~bl = K e (~-~/2 (3.15) 

Here  K is an in tegrat ion constant .  
Again  f rom (3.11) and  (3.15), one gets 

r 2 = K-24~ -(re§ e ~ (3.16) 

N o w  we cons ider  two cases, depend ing  on the value of  m. 

Case I. When  m = - 2 .  F rom equat ions  (3.14) and (3.16), we obta in  

r = (K2r4+  r2) -1/2 (3.17) 

which on integrat ion gives 

dKr  
c~ - 1 + (K2r  2 + 1) 1/2 (3.18) 

F rom (3.11) and  (3.18), one has 

e ~ P_.____~___ d2K2r2 [1 + ( K 2 r 2 +  1)1/2] 2 (3.19) 

Using (3.17) in (3.16), we get 
K2F 2 

e ~ - - -  (3.20) 
K2r  2 + 1 

Thus,  in this case the line e lement  (3.1) turns into the fo rm 

__Z____P 
ds 2 = d2KZr2 [1 + ( K 2 r 2 +  1)1/2] 2 dt 2 

K2r 2 
K2r2 +-------~l dr 2 -  r 2 d O : -  r 2 sin 2 0 &b 2 (3.21) 
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Now the GPR vacuum solutions for arbitrary n via the transformation (1.6) 
are 

dKr 
~b- l + ( K 2 + r 2 + l )  '/2 

K2r2 { dKr } 2" 
T l l - -  K 2 r 2 +  1 1+(K2r2+l)l/2 

T22 = --r2(n+l)  
l +(K2r2 + l)l/2 j 

"~33 = --F2(n+l) sin e 0 1 + (K2r2+ 1)1/2J (3.22) 

T44 = P { dgr  1 2(n-1) 
l +(K2r2 + l)l/2j 

Y~176 {1 dKr / 2(n+l) 
+(K2r2 + l)l/2J 

Yio = 0 

There is no horizon in this spacetime, only a naked singularity when 
n < 1. Thus, there are no black holes. 

Case IL m # -2 .  We define 

= - -  (3.23) u r 
6 

Using (3.23) into (3.13), we get 

mu3 +(m + 2)u2 + u =-rua 
2 

We can rewrite this equation in the form 

dr du 1 mu + m + 2 
r u 2 m u 2 / 2 + ( m + 2 ) u + l  

1 (m+2)  du 

(3.24) 

du 

(3.24') 
2 m u 2 / 2 + ( m + 2 ) u + l  

Due to the last term of (3.24') three cases arise: 
Case (i). When z~ = (m + 2 )  2 - 2 m  > 0, then equation (2.24) yields 

K 1 [mu 2 1]-I /2[mu+m+2--A' /2] -('~+2)/2~/2 
S - =  u L--z-+(m +2)u + j L m-----u-+ m +-'2 ~ J  (3.25) 
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C a s e  ( i i ) .  When A = (m + 2 ) 2 - 2 m  = 0, 

K 2  [ m u  2 -]-1/2 m + 2  
-=uL---2-+(m+2)U+lr J exp m u + m + 2  (3.26) 

C a s e  ( i i i ) .  When A = (m + 2) 2 - 2 rn < 0, 

Fmu = 1 r m + 2  m u + m + 2  l 
K - - 2 3 = u [ - 2  - + ( m + 2 ) u + l r  J expL~tan-' ('_ ~-A-~7g _[ (3.27) 

Here  K1, K2, and K 3 are  arbitrary constants.  
No exact  solut ion is possible in this case. However ,  an approximate  

solut ion can be obta ined for  n = 0 and n ~ 0 both  following a me thod  similar 
to Vanden Bergh (1980). 

4. NONEXISTENCE OF THE CONFORMALLY FLAT 
SPHERICALLY SYMMETRIC SOLUTIONS IN GPR 

We consider the static, spherically symmetric, conformally flat metric 
in the form 

d s  2 = e ~ ( d t  2 - d r  2 - r 2 dO 2 - r 2 sin 2 0 d05 2) (4.1) 

where a is a funct ion o f  radial  coordinate  r only. 
Assuming 05 as a funct ion of  r, we have for the field equat ions 

(1.4) and (1.5) for  the metric (4.1) 

3~,1 1 _I_ ~ 1 ..i 0511 O'~ 1 05........_.~11 = 0 (4.2) 
r 05 205 

2a1+  a1051+ 05~ = 
�89 +�89 0 (4.3) 

r 205 r05 

1 - - 1  2 - -  cI~I , 0~1(/)1 
~C~ 11 -I- ~0/1 -[" - - - V  ---~0 (4.4) 

r 205 

2 
051 1 -~- 051 0~1 -{--- 051 = 0 (4.5) 

r 

From (4.3) and (4.4), we have 

a l + ~ = O  (4.6) 

which yields the solut ion 

05 = q5o e -~ (4.7) 

where 050 is an integration constant.  
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Using equation (4.6) in (4.4), we get 

a l l . + ~ = O  
~1 r 

which leads to 

(4.8) 

a, = - K I  + K2 (4 .9 )  
r 

Here K~, K2 are constants of integration. 
With the help of equation (4.9), equation (4.7) can be written as 

qb = qbo e K'/r-r2 (4.10) 

Now, we see that the equations (4.9) and (4.10) can satisfy the field 
equation (4.2) if and only if K1 = 0, which implies that a = const and the 
scalar field ~b is constant everywhere. Thus, a conformally fiat static solution 
does not exist in the spherically symmetric case. 

5. SINGULAR BEHAVIOR OF THE RIEMANN CURVATURE 
INVARIANT R AND THE KRETSCHMANN CURVATURE 
INVARIANT S 

In this section we analyze the singular behavior of the solutions through 
the nature of Riemann curvature invariant R and Kretschmann invariant S. 

5.1. The Riemann curvature invariant for the GPR (with n = 0) vacuum 
solution (2.18) is given by 

(ar2+b) [8ab+�89 ] [ K + p  [ ( b ) l / 2 r ] }  R =  e x p ~ t a n  -1 (5.1) 

Thus we see that 

R-->0 as r-->0 or r-->~ (5.2) 

The Kretschmann curvature invariant S for the GPR (with n = 0) 
vacuum solution (2.18) is given by 

m4m22r 8 f Faa-2arA~_A+4 212 
S-(ar2+b)4~2L ar-~+-b r -5 r~-rJ 

+ r  r a r2+bJ  +-2- 

+AZ(A_4_12}exp~2(K+P) 
4 , ,  r,  
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where 

4ar - (K  +p) 
A -  ar 2 + b 

p - K  
B - - -  ar 2 + b 

Now, it is clear that 

S ~ o o  when r + 0  

S--> 0 when r-~ oo 

(5.4) 

5.2. The Riemann curvature invariant R for the solution (3.21) is 

R = o  (5.5) 

The Kretschmann curvature invariant S for the solution (3.21) is 

S _  
4 F  2 f 2 (1 -F) (F+2F+I )  6 1 

( F - l )  2r4 / ( F + F )  2 ~ F F 2 

+ [ 3  (F-1) (3F+F)]  2} 
F(F+F)  

(5.6) 

where 

F = K2r2+ 1 

It is obvious that 

S ~ c o  when r-~0 

S-~0 when r ~ o o  

(5.7) 

6. C O N C L U S I O N S  

Some static spherically symmetric solutions have been obtained for the 
G P R  for both n = 0 and n # 0. These solutions have a naked singularity at 
r = 0 in one case for n < 1 and in the other case for arbitrary values of  n. 
Thus, at least within the subset of  vacuum spacetimes of  spherical symmetry,  
there are no black holes in Arcidiacono's (1986, 1987) general projective 
relativity. 
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A P P E N D I X  A 

The Riemann  curvature  t e n s o r s  Rhijk for the metric (2.1) are 

e ~ 
R1414 = T [ - O / l l  + �89 - 0/1) ] 

R3434 = 

The Riemann  and Kre t schmann  curvature invariants R and S for  this 
metric are 

R_e-#[2fl~l 1 2 2  2 ] --- ~ r '~ ~(o~ 1 ' ~ 1  '~ Ol~l/~l) '{-7 (2ill + till) 

S = e  -2~ 2 #1,+ + � 8 8  2 

respectively. 

A P P E N D I X  B 

The Riemann  curvature t e n s o r s  Rhijk for  the metric (3.1) are 

R1212 = -�89 
R1313 = _ 1  r s in  2 0 ~ 1  

R1414 1 at = - ~ e  [a,, +�89 
R2323 = r 2 sin 2 0(e -# - 1) 

R2424 = -- lrog 1 e a - f l  

R3434 : - l r  sin 2 0 a l e  " - ~  
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The Riemann  curvature  invariant  R is 

e = e-/3 [o~11 +lo~l(Otl - 1~1) + 2  (o~1 - ~1 

and the Kretschmann curvature invariant S is 

Singh and Singh 

.q___ 
r 

F(1 = .jc~,Oll--~Ot~lJ~l) ] S=4 e-2~ L r 4 ~ r 2  (0/12_1_ j~2)_[_ ( l a l l  1 2 i 2 
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